

Review of clinical problems and ongoing technical challenges in development of computer assisted interventions for laparoscopic cholecystectomy

Franciszek Nowak
NIHR Central London PSRC

Background: Laparoscopic cholecystectomy (LC) is one of the most frequently performed surgical procedures globally. Despite its prevalence and benefits, such as shorter hospital stays, the procedure carries a persistent risk of severe complications, most notably bile duct injury (BDI). The incidence rates of BDI have remained troublingly stagnant, unaffected by advances in surgical training, instrumentation, or imaging techniques. Artificial intelligence (AI) and computer vision (CV) have emerged as promising avenues to enhance surgical safety, yet many current models are suboptimal.

Objectives: This narrative review aims to serve as a guide for developing more effective computer vision systems for LC by bridging the gap between clinical challenges and technical implementation. The objective is to move beyond surface-level performance reporting and conduct a deeper analysis of the clinical realities and technical hurdles that cause AI models to fail or underperform in real-world surgical environments. The work synthesizes pressing clinical needs, existing technical solutions, and their limitations to provide recommendations for future research.

Main Findings: The analysis indicates that a majority of surgical errors, with some studies attributing up to 97% of bile duct injuries, stem from visual misperception. These errors are most prevalent in difficult cases driven by patient-specific conditions like severe inflammation or anomalous anatomy. Current AI development is often misaligned with this reality, as most research avoids these complex scenarios, leading to translational failures. This review argues that simple pattern-matching solutions are insufficient. To create clinically impactful tools, future work must focus on methods grounded in the physical and geometric principles of the procedure. This includes developing AI capable of analysing tissue structures to identify safe dissection planes. Furthermore, development should focus on integrating preoperative anatomical information from CT or MRCP scans as priors, creating patient-specific models that can guide surgeons through challenging anatomies.

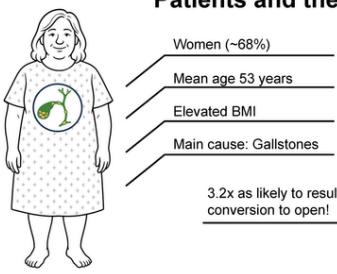
Identifying Limitations of Artificial Intelligence Algorithms for Laparoscopic Cholecystectomy

Franciszek Nowak, Dr. Evangelos Mazomenos, Prof. Brian Davidson, Prof. Matthew Clarkson

NIHR Central London – Patient Safety Research Collaboration, UCL Department of Medical Physics and Biomedical Engineering

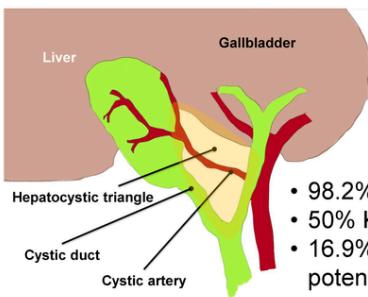
NIHR SafetyNet Symposium 2025

psrc-network.nihr.ac.uk


Laparoscopic Cholecystectomy

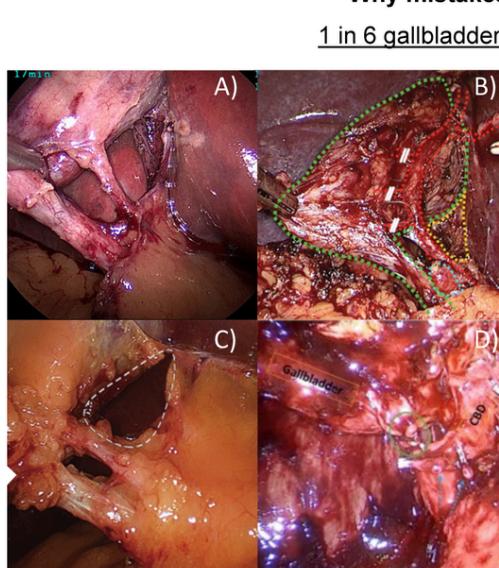
~60,000 cases per year in the UK

- Duration of hospital stays ↓
- Convalescence period ↓


Complications' rate 5-6.7% - doesn't reduce over time!

Patients and the procedure

Emergency?


Management

Critical View of Safety

- 98.2% Practice CVS
- 50% Know steps
- 16.9% Able to identify potentially harmful methods

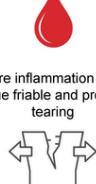
Only 20-32.4% of Bile Duct Injury are identified during the surgery!

Why mistakes happen?

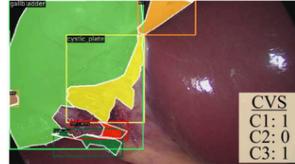
1 in 6 gallbladders are 'difficult'

What makes a case hard?

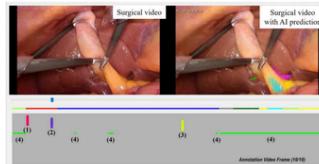
- Example, 'easy' case
- Aberrant anatomy
- Fatty Environment
- Scarring and Inflammation


Excess adipose tissue increase difficulty in identification of structures

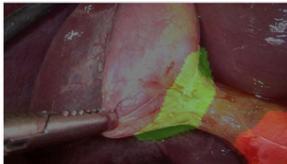
Abnormal anatomies found in ~20% of the patients



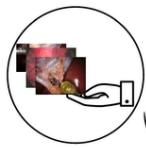
Excessive adhesion and neovascularisation complicate dissection



AI for Laparoscopic Cholecystectomy


CVS Detection

Phase Detection


Safe operating areas

Case difficulty stratification

Main problems of AI for Laparoscopic Cholecystectomy

Small datasets

- GDPR policies
- Recruitment difficulties

Easy datasets

- Surgeons rarely make mistakes in easy cases
- Translational failures

Annotations

- Inconsistent annotations subjective to interpretation

Visual complexity

- No sharp edges
- Low contrast, smoke, blood
- Patient variability

Difficult Design

- Flawed approach to architecture design
- Natural image research requires adaptation

Poor explainability

- Models act as a black-box
- Unexpected predictions on out of distribution examples

Validation

- ML metrics VS clinical relevance
- No ecologically validated testing

Conclusions:

Clinical focus

Understanding limitations of small datasets

Constraining and simplifying algorithms

Accounting for real-life difficulties

Validating against human performance

References:

- National Institute for Health and Care Excellence (NICE): Quality standards and indicators – Gallstone disease: Briefing paper. London: NICE; 2015.
- Mantakas DI et al. Critical view of safety in laparoscopic cholecystectomy: a systematic review of current evidence and future perspectives. *World J Surg*. 2023;47(3):640-648. doi:10.1007/s00268-022-08642-0
- Silivani A et al. Laparoscopic versus open cholecystectomy: a cost-effectiveness analysis at Rwanda Military Hospital. *World J Surg*. 2017;41(5):1225-1233. doi:10.1007/s00268-016-0861-0
- Keus F et al. Laparoscopic versus open cholecystectomy for patients with symptomatic cholelithiasis. *Cochrane Database Syst Rev*. 2006;(4):CD006231. doi:10.1002/14651858.CD006231
- Grimm EA et al. Utilization of an operative difficulty grading scale for laparoscopic cholecystectomy. *Surg Endosc*. 2019;33(1):110-121. doi:10.1007/s00464-018-6281-2
- Hundley VA et al. Adhesion degree as predictor of conversion surgery, common bile duct injury and resurgery in laparoscopic cholecystectomy: a cross-sectional study. *Ann Med Surg (Lond)*. 2021;98:102631. doi:10.1016/j.amsu.2021.102631
- Astefan A et al. The difficult gall bladder: outcomes following laparoscopic cholecystectomy and the need for open conversion. *Am J Surg*. 2016;212(6):1261-1264.
- Mehdadi NO et al. Delay complications post laparoscopic cholecystectomy: mechanism, preventive measures, and approach to management: a review. *Diagn Ther Endosc*. 2021;2011:967017. doi:10.1155/2011/967017
- Dip F et al. Randomized trial of near-infrared incisionless fluorescent cholangiography. *Ann Surg*. 2019;270(6):992-999. doi:10.1097/SLA.0000000000003178
- Van de Graaf FW et al. Lacunar implementation of the critical view of safety technique for laparoscopic cholecystectomy: results of a nationwide survey. *Surgery*. 2018;163(3):565-570.
- Mascagni P et al. Endoscapes, a critical view of safety and surgical scene segmentation dataset for laparoscopic cholecystectomy. *Syst Data*. 2025;12:331. doi:10.1038/s41597-025-04642-4
- Fujinaga A et al. Development of a cross-artificial intelligence system for identifying intraoperative anatomical landmarks and surgical phases during laparoscopic cholecystectomy. *Surg Endosc*. 2023;37(9):6119-6128. doi:10.1007/s00464-023-10997-8
- Laparite S et al. Validation of an artificial intelligence platform for the guidance of safe laparoscopic cholecystectomy. *Surg Endosc*. 2022;37:1-9. doi:10.1007/s00464-022-09439-9